

Emerging Trends in Nanoparticle-Based Drug Delivery Systems for Targeted Cancer Therapy

Bobby Yadav*

Faculty of Pharmacy, *Naraina Vidyapeeth Group of Institutions*,
Panki, Kanpur (Uttar Pradesh), India

Vishal Dubey

Faculty of Pharmacy, *Naraina Vidyapeeth Group of Institutions*,
Panki, Kanpur (Uttar Pradesh), India

Submission Date: 14.09.2025 | Acceptance Date: 31.12.2025 | Publication: 27.01.2026

Abstract

Oncology is changing with nanoparticle-based drug delivery methods, which may overcome conventional chemotherapy's bioavailability, systemic toxicity, and lack of selectivity. Recent nanotechnology advances have allowed the design of multifunctional nanoparticles like liposomes, dendrimers, polymeric micelles, metallic nanoparticles, and lipid-based carriers that can improve drug solubility, prolong circulation time, and deliver therapeutic agents directly to tumor sites through passive (permeability and retention effect) and active (ligand-mediated targeting) mechanisms. Nanoparticles containing targeting ligands, antibodies, peptides, and aptamers improve site-specific delivery and therapeutic efficacy by decreasing off-target effects. In addition, stimulus-responsive nanoparticles that release medications in reaction to internal (pH, enzymes, redox status) or exterior (light, heat, magnetic fields) stimuli are promise for precision medicine. Despite progress, clinical translation is hindered by large-scale manufacture, regulatory approval, long-term toxicity, and tumor microenvironment heterogeneity. Nanoparticles are being added to immunotherapy, gene therapy, and combination regimens to improve therapeutic outcomes. This study discusses nanoparticle-based cancer drug delivery design methodologies, therapeutic applications, preclinical and clinical progress, and future directions to bridge laboratory innovation with clinical success.

Keywords: Nanoparticle drug delivery, targeted cancer therapy, liposomes, dendrimers, polymeric micelles

Introduction

Millions of new cases of cancer are diagnosed each year, and survival outcomes remain difficult despite advances in screening, diagnostics, and therapeutic modalities. Conventional treatment strategies like chemotherapy, radiotherapy, and surgery are widely used, but non-specific distribution of chemotherapeutic agents, systemic toxicity, and development still limit them. Nanoparticles—engineered at 1–100 nanometers—have unique physicochemical properties like high surface area-to-volume ratio, tunable size and shape, surface modifiability, and the ability to encapsulate hydrophilic and hydrophobic drugs, making them ideal for

designing carriers that can navigate the complex tumor microenvironment and deliver site-specific drugs. Liposomes, dendrimers, polymeric micelles, metallic nanoparticles (e.g., gold, silver, iron oxide), solid lipid nanoparticles, and nanogels have been studied for cancer therapy over the past two decades due to their stability, drug-loading efficiency, biocompatibility, and release kinetics. Doxil® (liposomal doxorubicin) was the first to reach clinical application, demonstrating reduced cardiotoxicity and prolonged circulation time compared to conventional doxorubicin, demonstrating nanomedicine's translational potential. The enhanced permeability and retention (EPR) effect, in which tumor tissues have leaky vasculature and poor lymphatic drainage, allows nanoparticles to accumulate more readily in tumor sites than in normal tissues, providing a passive targeting mechanism that improves drug concentration in the tumor microenvironment. Due to tumor heterogeneity and variable vascularization across patients, the EPR effect alone is insufficient for precise therapy. Active targeting strategies use nanoparticles functionalized with ligands like monoclonal antibodies, peptides, folic acid, or aptamers to recognize and bind to overexpressed receptors on cancer cell surfaces, facilitating receptor-mediated endocytosis and improving outcomes. Stimuli-responsive nanoparticles, an advanced class of "smart" drug delivery vehicles, can release therapeutic payloads in response to endogenous stimuli like acidic pH, hypoxia, redox gradients, or tumor enzymatic activity, or exogenous triggers like light, ultrasound, magnetic fields, and temperature, achieving controlled release and reducing premature drug leakage. Due to their ability to carry immune checkpoint inhibitors, small interfering RNA (siRNA), CRISPR-Cas9 components, or tumor-associated antigens, nanoparticles are being used in immunotherapy and gene therapy to modulate immune responses, reverse resistance mechanisms, and enable personalized treatment. Surface engineering and multifunctional nanoparticles have enabled theranostics by combining therapeutic and diagnostic functions into a single nanoplatform that can deliver drugs and enable imaging modalities like MRI, CT, or fluorescence for real-time biodistribution, treatment progress, and therapeutic outcomes. Despite these advances, large-scale reproducible manufacturing, stability during storage and transport, long-term toxicity, immunogenicity, and clearance mechanisms must be rigorously evaluated, and regulatory pathways for complex nanomedicines are still evolving, making clinical adoption difficult. Precision medicine methods that customize nanomedicine design to patient-specific tumor biology are needed to achieve uniform therapy effects due to tumor heterogeneity and EPR effect variability. Thus, biodegradable, biocompatible nanoparticles with improved targeting precision, artificial intelligence and computational modeling for nanoparticle design optimization, and synergistic effects of nanocarriers with conventional and emerging cancer therapies are current research priorities. The current paper analyzes nanoparticle-based drug delivery systems for targeted cancer therapy, including their mechanisms, design strategies, preclinical and clinical advances, and key challenges that must be addressed to fully realize nanomedicine's potential as a cornerstone of future cancer treatment.

Nanotechnology and Cancer Therapy

Surgery, chemotherapy, and radiotherapy have been used to treat cancer, but each has drawbacks, especially systemic chemotherapeutic drugs, which distribute non-specifically throughout the body, damaging healthy tissues and causing adverse effects like myelosuppression, cardiotoxicity, nephrotoxicity, and gastrointestinal toxicity, which limit the maximum tolerable dose and compromise outcomes. Nanoparticles (1–100 nm) have high surface-to-volume ratio, tunable size, shape, and surface chemistry, and the ability to encapsulate both hydrophilic and hydrophobic drugs, making them versatile carriers for controlled release, improved solubility, and enhanced stability of anticancer agents. Targeted drug delivery is a major benefit of nanotechnology in oncology. In passive targeting, nanoparticles use the enhanced permeability and retention (EPR) effect, caused by solid tumors' leaky vasculature and impaired lymphatic drainage, to accumulate preferentially in tumor tissues (compared to healthy tissues). Due to the heterogeneity of the EPR effect across tumor types and patients, nanoparticles are surface-functionalized with ligands like monoclonal antibodies, peptides, folic acid, or aptamers to selectively bind to cancer cell receptors overexpressed, promoting receptor-mediated endocytosis and intracellular drug delivery. Beyond simple drug carriers, nanotechnology has enabled the creation of multifunctional platforms, known as "theranostics," which integrate therapeutic and diagnostic functions into a single nanostructure, allowing simultaneous drug delivery and imaging through MRI, CT, or fluorescence for real-time drug biodistribution, treatment progress, and therapeutic outcomes. Stimuli-responsive nanoparticles, also known as "smart nanoparticles," are an advanced nanomedicine innovation that release their payload in response to specific endogenous stimuli like acidic tumor pH, high glutathione levels, hypoxia, or enzymatic activity, or external stimuli like temperature, light, ultrasound, or magnetic fields, which increases drug release precision and reduces pre-release. Nanoparticles can deliver immune checkpoint inhibitors, tumor antigens, or adjuvants to modulate immune responses or carry nucleic acids like siRNA, miRNA, or CRISPR-Cas9 components to silence oncogenes or repair mutated genes, expanding the scope of nanotechnology beyond chemotherapeutic drug delivery. Nanotechnology's versatility in oncology is shown by photothermal therapy, where metallic nanoparticles like gold nanoshells absorb near-infrared light and convert it into heat to ablate cancer cells, and photodynamic therapy, where photosensitizers are delivered to tumors and activated by light to generate cytotoxic reactive oxygen species. Clinically, nanotechnology has shown promise with liposomal doxorubicin (Doxil®), paclitaxel albumin-bound nanoparticles (Abraxane®), and liposomal daunorubicin (DaunoXome®), which have better pharmacokinetic profiles, lower toxicity, and better patient outcomes than conventional drugs. These advances are promising, but large-scale manufacturing reproducibility, stability during storage and distribution, immune recognition and clearance by the mononuclear phagocyte system, long-term toxicity and biodistribution concerns, and complex regulatory requirements for novel nanomedicines must be carefully considered in research. Due to tumor heterogeneity, vascularization differences, and EPR effect variations, precision medicine approaches that

customize nanoparticle designs to individual tumor biology are increasingly supported by computational modeling and artificial intelligence, which optimize nanoparticle size, surface charge, and drug release kinetics. Nanotechnology has revolutionized cancer therapy by enabling selective, controlled, and multifunctional drug delivery and personalized oncology strategies that combine nanocarriers with genomics, immunology, and advanced imaging to create integrated treatment solutions. In conclusion, nanotechnology represents a paradigm shift in cancer therapy by addressing the shortcomings of traditional chemotherapy and expanding the arsenal of therapeutic approaches. Although several hurdles remain before widespread clinical adoption, interdisciplinary research is rapidly advancing the field toward a future where nanoparticle-based systems may be a cornerstone of precision oncology.

Types of Nanoparticles in Drug Delivery

Each nanocarrier type has unique physicochemical properties, surface modifications, and release mechanisms to optimize cancer treatment efficiency. These systems can be broadly categorized into organic nanoparticles like liposomes, polymeric nanoparticles, dendrimers, and micelles, and inorganic nanoparticles like metallic and

1. Polymeric Nanoparticles

- Biodegradable polymers (PLGA, chitosan, or PEG) can be used to create nanospheres or nanocapsules.
- Ensure controlled and sustained drug release.

2. Lipid-Based Nanoparticles

- **Liposomes:** Hydrophilic and hydrophobic medicines can be carried in phospholipid bilayer vesicles.
- **Solid Lipid Nanoparticles (SLNs):** In order to improve bioavailability and controlled release, solid lipids stabilize medications.
- **Nanostructured Lipid Carriers (NLCs):** An enhanced SLN formulation that brings the benefits of both solid and liquid lipids to increase the drug loading capacity.

3. Metallic Nanoparticles

- Comprises of nanoparticles that have been functionalized on their surfaces and possess optical properties; these nanoparticles are frequently utilized in imaging, photothermal therapy, and targeted delivery.
- They may also contain nanoparticles of iron oxide or silver.

4. Dendrimers

- To enable high drug-loading capacity and accurate drug conjugation, these synthetic polymers take the shape of a tree and have many terminal groups.

5. Carbon-Based Nanoparticles

- **Carbon Nanotubes (CNTs):** Hollow cylindrical structures that can transport drugs or genes.

- **Graphene Oxide:** Provides high surface area for drug loading and photothermal applications.
- **Fullerenes:** Used in experimental drug delivery and antioxidant therapies.

6. Silica Nanoparticles

- **Mesoporous silica nanoparticles (MSNs):** Have tunable pore sizes and large surface area.
- Suitable for high drug loading, controlled release, and targeted delivery.

7. Protein-Based Nanoparticles

- These are commonly utilized in the delivery of cancer drugs (such as Abraxane® with albumin-bound paclitaxel) and are biodegradable, biocompatible, and made from silk fibroin, gelatin, or albumin.

8. Magnetic Nanoparticles

- Usually made of iron oxide.
- Utilized in the field of theranostics, which combines therapy and diagnostics.
- They can be directed to specific locations using external magnetic fields.

9. Hybrid Nanoparticles

- For materials to have several purposes, mix them with lipids, metals, and polymers.
- Drugs, imaging agents, or genes can be delivered together if this is allowed.

Conclusion

The use of nanoparticles in drug delivery systems has become increasingly common due to their many useful properties, including the ability to target specific areas, increase bioavailability, decrease systemic toxicity, improve solubility, and control release. There is a wide variety of carriers available, including lipid and polymeric ones, as well as metallic, carbon-based, silica, protein, magnetic, and hybrid nanoparticles. These offer a variety of platforms that can be tailored to meet specific therapeutic needs. Clinical uses have already been shown for liposomes and solid lipid nanoparticles, but the safety and efficacy of other materials, such as dendrimers, carbon nanostructures, and mesoporous silica, are still the subject of substantial research. Gene delivery, cancer targeting, and theranostics—which combine diagnosis and treatment—are just a few examples of the new medicines made possible by nanoparticles, which significantly enhance the pharmacokinetics and pharmacodynamics of pharmaceuticals. Nevertheless, there are still many unanswered questions regarding possible toxicity, long-term biocompatibility, regulatory approval, and large-scale manufacture. All things considered, nanoparticles are a giant leap forward for the pharmaceutical sciences. As their development, refinement, and clinical validation progress, they could soon usher in a new era of precision drug delivery and personalized treatment.

Bibliography

Allen, T. M., & Cullis, P. R. (2013). Liposomal drug delivery systems: From concept to clinical applications. *Advanced Drug Delivery Reviews*, 65(1), 36–48. <https://doi.org/10.1016/j.addr.2012.09.037>

Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. *Nature Biotechnology*, 33(9), 941–951. <https://doi.org/10.1038/nbt.3330>

Caruso, F. (Ed.). (2011). *Colloids and colloid assemblies: Synthesis, modification, organization and utilization of colloid particles*. Wiley-VCH.

Chenthamara, D., Subramaniam, S., Ramakrishnan, S. G., Krishnaswamy, S., Essa, M. M., Lin, F. H., & Qoronfleh, M. W. (2019). Therapeutic efficacy of nanoparticles and routes of administration. *Biomaterials Research*, 23(20), 1–29. <https://doi.org/10.1186/s40824-019-0166-x>

Duncan, R., & Gaspar, R. (2011). Nanomedicine(s) under the microscope. *Molecular Pharmaceutics*, 8(6), 2101–2141. <https://doi.org/10.1021/mp200394t>

Kesharwani, P., Jain, K., & Jain, N. K. (2014). Dendrimer as nanocarrier for drug delivery. *Progress in Polymer Science*, 39(2), 268–307. <https://doi.org/10.1016/j.progpolymsci.2013.07.005>

Lu, J., Liang, M., Zink, J. I., & Tamanoi, F. (2007). Mesoporous silica nanoparticles for cancer therapy: A multifunctional nanoplatform with potential for imaging and drug delivery. *Small*, 3(8), 1341–1346. <https://doi.org/10.1002/smll.200700005>

Panyam, J., & Labhasetwar, V. (2012). Biodegradable nanoparticles for drug and gene delivery to cells and tissue. *Advanced Drug Delivery Reviews*, 64(Supplement), 61–71. <https://doi.org/10.1016/j.addr.2012.09.023>

Singh, R., & Lillard Jr., J. W. (2009). Nanoparticle-based targeted drug delivery. *Experimental and Molecular Pathology*, 86(3), 215–223. <https://doi.org/10.1016/j.yexmp.2008.12.004>

Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. *Journal of Controlled Release*, 200, 138–157. <https://doi.org/10.1016/j.jconrel.2014.12.030>