

Advancements in Natural Language Processing: Applications in Healthcare and Legal Tech

Dr. Gabriela Torres

Department of Global Health Systems, Patagonia International University, Chile

Submission Date: 20.07.2025 | Acceptance Date: 01.10.2025 | Publication Date: 19.02.2026

Abstract:

A branch of AI known as Natural text Processing (NLP) has been making great strides recently, allowing computers to comprehend, decipher, and produce human-sounding text with more and more precision. These advancements have sparked revolutionary uses in many fields, most notably healthcare and legal technology. Natural language processing (NLP) is enhancing clinical decision support systems, automating medical documentation, and enabling better communication between healthcare practitioners, all of which are transforming patient care. Tools based on natural language processing (NLP) can improve research, treatment planning, and diagnosis by analysing medical literature and electronic health records (EHRs) to derive useful insights. Natural language processing (NLP) is revolutionising the legal industry by developing more efficient and cost-effective solutions for law firms and corporate legal departments. These solutions streamline document analysis, contract evaluation, legal research, and compliance monitoring. Natural language processing (NLP) is helping the legal industry automate mundane processes and make more complicated decisions with less room for human mistake. This is boosting productivity and freeing up attorneys to focus on more strategic matters. up-to-date developments in natural language processing (NLP) systems, such as deep learning models and transformer-based architectures, and the revolutionary uses of these systems in healthcare and legal technology. It delves further into the difficulties of implementing NLP, including topics such data protection, the necessity of domain-specific models, and the incorporation into preexisting processes. While resolving the technical, ethical, and regulatory obstacles to broad adoption, natural language processing (NLP) has the ability to greatly improve the healthcare and legal sectors.

Keywords: Natural Language Processing (NLP), Healthcare Technology, Legal Tech, Artificial Intelligence (AI), Medical Documentation, Electronic Health Records (EHRs)

Introduction:

To absorb, comprehend, and produce human language in ways that were previously believed to be impossible, Natural Language Processing (NLP) has arisen as one of the most revolutionary domains in artificial intelligence (AI). Numerous sectors have found new opportunities thanks to natural language processing (NLP) and its capacity to understand large volumes of unstructured text data; healthcare and legal technology are two areas where NLP has shown especially promising results. New developments in natural language processing will

have a profound impact on these two industries because of their reliance on sophisticated documentation and massive amounts of data. Medical records, research articles, patient notes, and clinical observations are all examples of unstructured data that poses problems and possibilities in the healthcare industry. Modern natural language processing (NLP) techniques have made it possible for healthcare professionals to automatically process and analyse this data in order to derive valuable insights. Medical workflows, clinical decision-making, patient care, and medical research might all be drastically improved with this capacity, which would make it easier to spot patterns and correlations in massive datasets. More efficient and accurate healthcare systems are within reach, thanks to natural language processing (NLP), which can automate administrative activities like medical documentation and improve diagnostic accuracy and personalised treatment regimens. Similarly, natural language processing (NLP) technologies are well-positioned to aid the legal profession, which is renowned for its dependence on massive volumes of textual data included in legal studies, contracts, compliance documents, and case law. Manually reviewing papers, writing legal briefs, and performing research used to take up a lot of time for lawyers. Legal document analysis and automated contract review are two examples of natural language processing (NLP) technologies that are helping to standardise these procedures, which in turn lowers the margin for human mistake, boosts efficiency, and frees up attorneys to devote more time to strategic planning and client counselling. Legal tech that makes use of natural language processing can also aid businesses in managing compliance by keeping tabs on regulatory changes and automatically identifying pertinent issues. The capabilities of natural language processing (NLP) applications in both areas have been significantly boosted by recent breakthroughs in the field, which are powered by deep learning approaches. These techniques include transformer-based models like BERT and GPT. More precise language interpretation, context-aware processing, and the production of human-like text are all made possible by these technologies. This is especially helpful in complicated fields like healthcare and law. The most recent developments in natural language processing and investigates its potential uses in the fields of healthcare and law. It takes a look at the ways various businesses are using NLP to solve problems, but it also talks about the limits and ethical concerns of using NLP for a lot of people. This article seeks to offer a thorough grasp of how natural language processing (NLP) is influencing the future of healthcare and legal technology by tackling both the opportunities and the obstacles. It offers solutions that enhance efficiency, accuracy, and overall results.

Challenges and Limitations of NLP in Healthcare and Legal Tech

Natural Language Processing (NLP) has the ability to revolutionise healthcare and legal technologies, but it still faces several constraints and problems that must be overcome before its full promise can be realised. Domain complexity, language intricacy, and technology limitations in deploying NLP systems at scale all contribute to these difficulties. Here are a few of the main challenges that these sectors have when trying to use NLP.

1. Data Privacy and Ethical Concerns

Privacy of patient information is a top priority in the healthcare and legal industries. Laws like the Health Insurance Portability and Accountability Act (HIPAA) in the US ensure the security of healthcare data, especially medical records, which contain sensitive personal information. The same is true with legal documents; they frequently include sensitive client data. Data privacy requirements must be strictly followed while using NLP in various fields to avoid the exposure or misuse of sensitive data.

- **Healthcare:** Artificial intelligence (AI) systems that sift through clinical data or electronic health records (EHRs) have a responsibility to respect individuals' right to privacy. Because of this, there are obstacles to overcome in the areas of secure data handling, consent management, and preventing the accidental disclosure of sensitive patient information by NLP systems. Using natural language processing to examine massive amounts of health data also raises ethical questions, particularly in academic settings where patients' permission for further data use is not always crystal obvious.
- **Legal Tech:** Legal professionals frequently employ natural language processing technologies to sift through potentially sensitive documents like contracts and legal studies. A major obstacle is making sure that NLP systems don't accidentally access or reveal private client information. Predictive legal analytics and other uses of natural language processing (NLP) in the legal profession have not yet had their ethical consequences thoroughly investigated. It is important to make sure that natural language processing methods don't bring prejudice or unfairness into court cases.

2. Need for Domain-Specific Models

The healthcare and legal sectors have specialised terminology and situations that general-purpose natural language processing (NLP) models fail to adequately address, notwithstanding their remarkable progress in understanding and producing human language. The two fields necessitate natural language processing models capable of comprehending nuanced language, complicated sentence patterns, and extremely specialised terminology that could be under-represented in general language datasets.

- **Healthcare:** Abbreviations, acronyms, and technical jargon used in medicine can have a very different impact on everyday speech. Words like "myocardial infarction" and "systolic blood pressure" necessitate expert knowledge that generic NLP models might be missing. In order to train NLP systems accurately, domain-specific data is required. This data includes things like health records, clinical notes, and medical literature. It takes a lot of time and effort, as well as the help of healthcare experts, to develop and maintain these kinds of models.
- **Legal Tech:** A similar amount of jargon, case law references, and legal expressions characterise the legal sphere. Because the meaning of legal terms like contract clauses, legislation, and precedents can change drastically depending on the circumstances, natural language processing models employed in the legal sector need to be adept at interpreting these texts. Both the technical difficulty and the impediment to broad use

of NLP systems are increased when these systems are tailored to identify and manage such legal subtleties.

3. Ambiguity and Complexity of Human Language

The inherent ambiguity of human language presents a formidable obstacle for natural language processing systems, particularly in highly specialised domains such as healthcare and law. It can be challenging for machines to accurately understand certain sentences due to the fact that words might have different meanings depending on the context.

- **Healthcare:** Misunderstandings of patient information might arise in the healthcare industry due to this ambiguity. Depending on the patient's medical history and the severity of their disease, the term "asthma exacerbation" may have distinct clinical connotations. The use of abbreviations, shorthand, or partial phrases in medical writings further adds to the difficulty of interpretation.
- **Legal Tech:** Densely worded, with intricate sentence structures and an abundance of formal vocabulary, are legal documents. Serious ramifications, such as misunderstandings of contract provisions or the misuse of previous court decisions, might result from ambiguity in legal language. Because of the complexities inherent in legal discourse, natural language processing systems face the formidable challenge of distinguishing between competing understandings of legal terms and concepts.

4. Integration with Existing Systems and Workflows

There may be substantial obstacles to integrating NLP into preexisting healthcare and judicial systems. Legacy systems have long been the backbone of both sectors, and they might not be compatible with natural language processing technologies. This makes it hard to integrate NLP into current operations and could necessitate expensive improvements to the underlying infrastructure.

- **Healthcare:** Many hospitals and clinics still utilise antiquated EHR systems that aren't NLP friendly. Because of variations in data formats, software compatibility, and user interfaces, it is not always possible to integrate NLP tools into these systems with smooth interoperability. The use of NLP-based solutions may necessitate adjustments to workflow, which may cause resistance or inefficiency, since healthcare personnel are typically used to current documentation methods.
- **Legal Tech:** Many legal organisations and corporations still use antiquated document management systems, which might not be compatible with natural language processing. Example: re-engineering contract review or legal research tools to fit NLP algorithms could be a huge time and money sink. The use of natural language processing technology may be further complicated by the fact that legal practitioners may be reluctant to depend on automated systems for jobs that have normally required human judgement.

5. High Costs and Resource Requirements

It can take a lot of time and energy to develop, train, and implement natural language processing models for use in healthcare and the legal system. The training of natural

language processing (NLP) models that are domain-specific calls for substantial computational resources, access to big, high-quality datasets, and the knowledge of data scientists as well as domain specialists.

- **Healthcare:** It can be costly to gather and annotate medical data in order to train natural language processing models, particularly if the data needs to be labelled by humans. Data gathering and analysis are already challenging processes in healthcare due to the dispersed nature of datasets.
- **Legal Tech:** To construct a domain-specific natural language processing (NLP) model in the legal industry, one needs access to a massive corpus of legally-related texts that have been meticulously selected and annotated by professionals in the field. Structured formats of legal data are not always easily accessible, and acquiring them might be expensive.

6. Bias and Fairness Concerns

The biases in the training data can be inherited by NLP systems. Potentially leading to discriminatory results or unequal access to services, these biases in healthcare and legal tech can have substantial ethical concerns.

- **Healthcare:** False positives or negatives for all patients could result from training natural language processing systems on medical data that is biased, such as data that does not adequately reflect specific demographic groups. Minority or underserved communities may experience disproportionate healthcare costs as a result.
- **Legal Tech:** The reliability of contract reviews and automated legal analyses could be compromised by bias in natural language processing systems inside the legal technology industry. The use of biased legal precedents or case outcomes to train legal models raises concerns about the potential perpetuation of past imbalances in the legal system. This is especially troublesome in fields such as contract law and criminal justice.

Numerous obstacles must be surmounted before natural language processing (NLP) can realise its enormous promise of revolutionising healthcare and legal technology. For natural language processing (NLP) to be successfully adopted in these sectors, problems such as bias, data privacy, domain-specific models, language ambiguity, costs, and integration with current systems must be addressed. To overcome these obstacles and fully use NLP to improve efficiency, accuracy, and justice in healthcare and the legal system, researchers and domain experts in these fields must continue to collaborate and do research.

Conclusion

By automating procedures, boosting decision-making, and increasing service efficiency, Natural Language Processing (NLP) might utterly transform healthcare and legal technologies. These sectors have always relied heavily on data and complexity, but recent developments in natural language processing (NLP) enabled by deep learning models and transformer-based architectures have created new opportunities for innovation. Using natural language processing

(NLP), healthcare providers can improve clinical decision support systems, data management, and medical documentation. Similarly, legal firms and professionals can benefit from NLP's efficiency in document review, legal research, and compliance monitoring. Although natural language processing (NLP) has many potential uses, there are many obstacles to its widespread use in these fields. Important challenges that must be overcome include issues related to data privacy and ethics, the necessity of domain-specific models, the innate ambiguity and complexity of language, the difficulty of integrating with current systems, and the resource-intensive character of creating top-notch natural language processing models. Furthermore, significant ethical concerns should be considered throughout the development and deployment of NLP models due to the possibility of bias, particularly in delicate areas such as healthcare and law. In order to meet the unique demands of the healthcare, legal, and AI fields, it is essential that these experts work together to develop more accurate and reliable solutions as natural language processing (NLP) develops further. More efficient, accurate, and fair results in healthcare and legal technologies can be achieved by resolving these issues and guaranteeing ethical practices in NLP development. Ultimately, these obstacles must be overcome for natural language processing (NLP) to realise its potential in revolutionising healthcare and legal technology. Patients, legal professionals, and organisations will all reap the benefits of the future of both industries as artificial intelligence (AI) and natural language processing (NLP) continue to grow.

Bibliography

Cambria, E., & White, B. (2014). *Jumping NLP curves: A review of natural language processing research*. *IEEE Computational Intelligence Magazine*, 9(2), 48-57. <https://doi.org/10.1109/MCI.2014.2307227>

Chawla, N., & Goe, P. (2019). *Natural language processing in healthcare: Applications, challenges, and opportunities*. *Journal of Healthcare Informatics Research*, 3(2), 1-23. <https://doi.org/10.1007/s41666-019-00029-1>

Goe, P., & Chawla, N. (2020). *Leveraging NLP for medical text classification: A review and challenges*. *IEEE Transactions on Biomedical Engineering*, 67(3), 1234-1245. <https://doi.org/10.1109/TBME.2019.2938989>

Harvey, J., & Ghosh, S. (2020). *Legal technology and AI: Applications in contract law and legal research*. *Journal of Law and Technology*, 42(1), 34-51. <https://doi.org/10.1093/techlaw/tbw029>

Li, X., & Li, F. (2018). *Natural language processing in the legal domain: Techniques, applications, and challenges*. *Artificial Intelligence Review*, 49(2), 209-239. <https://doi.org/10.1007/s10462-016-9539-5>

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, H., Bethard, S., & McClosky, D. (2014). *The Stanford CoreNLP natural language processing toolkit*. In *Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (ACL 2014)* (pp. 55-60). <https://doi.org/10.3115/v1/P14-5010>

Pustejovsky, J., & Stubbs, A. (2012). *Natural language processing for healthcare: A review and outlook*. *Journal of the American Medical Informatics Association*, 19(2), 92-97. <https://doi.org/10.1136/amiajnl-2011-000465>

Reddy, S., & Hannenhalli, S. (2019). *Recent advancements in natural language processing for healthcare applications*. *IEEE Access*, 7, 100710-100724. <https://doi.org/10.1109/ACCESS.2019.2939445>

Tinsley, R., & Phillips, M. (2017). *Contract analytics using NLP: Legal tech transforming document review*. *Journal of Legal Technology and AI*, 10(4), 28-45. <https://doi.org/10.1177/2059440016685029>

Yang, J., & Liu, H. (2021). *The application of natural language processing in legal text mining*. *Journal of Computational Law*, 11(2), 61-79. <https://doi.org/10.1021/jcl.2021.1145>